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LEVEL RECOVERY CURVE IN THE RELAXATION
THEORY OF FILTRATION

O. Yu. Dinariev UDC 532.546

A problem on the level recovery curve in the relaxation theory of filtration is considered when there is a
continuous spectrum of internal relaxation times. An asymplotics at large times is found as a functional of
a relaxation kernel. An explicit expression with two additional parameters characterizing the relaxation
kernel is calculated for a power spectrum of internal relaxation processes in a rock-saturating fluid system.

Darcy’s law in the linear theory of filtration is valid only for processes where characteristic times of change
in macroscopic parameters (for example, of a pressure gradient) are much larger than the characteristic internal
relaxation time in a porous medium-saturating fluid system on a microlevel. Otherwise, it is necessary to use
generalizations of Darcy’s law by the relaxation theory of filtration that were suggested in [1-6]. There are
sitnations when a relaxation law of filtration can be strictly derived from the kinetic theory [7].

Internal relaxation processes can be manifested in nonstationary hydrodynamic investigations of wells;
therefore, on interpretation they should be taken inio account along with such factors affecting the dynamics as
the geological structure of a well-botton zone. Previously, the theoretical results were concerned with the form of
the pressure recovery curve (PRC) over an initial section [8] and with the asymptotics of the PRC at large times
for discrete and continuous spectra of internal relaxation times {9, 10].

- In the present work within the framework of relaxation isothermal theory of filtration we investigate the
problem on a level recovery curve (LRC) in a vertical well for a case of a single-phase slightly compressible liquid
in a homogeneous isotropic collector.

For the arbitrary time function f = f(z) we denote the Fourier transformation by the symbol ff = fp(w)

+ 00

fy (@) = [ exp (- iwt) [ (t) dt.

— 00

In the relaxation theory of filtration Darcy’s law is generalized in the followirig manner [1-6]:

+ o0
. . _ }G .
ity Xy = — k' [ Kitg— 0= (1, ¥y, (1)
—x dx
where G = p + pU; i, j run over the values 1, 2, 3, which correspond to Cartesian coordinates XL
The kernel K = K(1) describes internal relaxation processes in the porous medium-saturating fluid system.

For the kernel some conditions are fulfilled:
1) K(¢ is a nonnegative monotonically decreasing function that has the dimensionality Ll

+ 00
2) f K(t)dt =1 is the condition for reduction of (1) to Darcy’s law for slow processes;

3) K(t) =0 with ¢ < 0 (causality); 0 < K(0) < + is the condition of signal-velocity finiteness [11];

4) Re Kr(w) > 0 with Im w < 0 is the dissipativity condition [4, 6].

By virtue of condition (3) in accordance with a Paley—Wiener theorem |12 ] the function Ky = Kg{w) in
the lower haif-plane of the complex plane is holomorphic.
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From condition 2) it follows that
Kg (0) =1, (2

For the relaxation kernel we take an expression that corresponds to the continuous spectrum of purely
dissipative internal relaxation processes:

+ 00
KW=] A@1 " exp (- t/7) dr, 3)
0
where A(r) is a smooth nonnegative function. In the Fourier transform, expression (3) takes the form
+ oo -1
Kp@) =] A@) (1 + iw)  dr. (4)
0

Equations (2) and (4) yield the normalizing equality

+ o0

1=f A@)dr. %)
0

In addition, the integral convergence results from condition 3)

+ 00

=ft'Aa@dr<+ . (6)
0

Relations (3)-(6) are suffice 1o carry out conditions 1)-4) for the relaxational kernel. From expression (4)
it follows that the function Kg(w) -is holomorphic with a cut along the beam Re w = 0, Im w > 0. Using a
Sokhotskii—Plemel formula, it is simple to calculate the function Kg(w) on the cut shores:

Kp, = Kp (iy + &) = Ly (y) — inLy (), )
Kp_ = Kg (iy — &) = Ly () + inLy (3) ,

]

L (y»=V.p _g A (z—l) (z — y)—] dz,

L=y ' aph.

Here and below, y > 0; ¢ is an infinitesimal positive number.

Now we consider a linear problem on the LRC in a cylindrically symmetric statement (.e., for a vertical
well) in the case where there is only one productive layer. The pressure field dynamics is determined by the
integro-differential equation [10]

+ o0
%p(t()vr):/c_f K(to_t)Ap(l,r)dZ, (8)

where & = kE/(mu); A = a*/or* + r Yo/, E= (El_1 +(m™! - I)Ez_l)_l. The parameter r changes within the
limits ry < r < ry.
The pressure on the well bottom is determined by liquid-column dynamics
2
-(5 =v(g—0Q). &)

r=ry
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+ o0
3 - - . . .
Here ¢ = g(t) =Af K(ty — t)g—rp(t, rdt, A = 2xr hkpu Lv=s lg, Q = Q(n is a given function that characterizes

the mass removal of liquid from the well.
On the supply contour the pressure equals the given bed pressure ppeq

P (4, 1) = Dpeq - (10)
Hereafter, we employ a system of measurement units, in which the following equalities are fulfilled:
k=r =1. (1

The quantity « has the dimensionality /1 (Lis the length), therefore condition (11) fixes the unit length
and unit time.

We will solve problem (8)-(10) for the case when the selection function ) = Q(¢) at the instant of time ¢ =
0 changes over abruptly from one constant value to another:

, 1=0,
Q0 =1g" 3o

The process when Q; = 0 is usually called the level recovery.
We introduce a new unknown function

P=®(,r)=p(t,r) — Pped —/1“ Qg ln (r/ry).

The function ¢ (1) = ®(, 1) sets to zero at negative times, whereas at positive times it characterizes the
change in the bottom pressure after the change-over of the regime. In the case of small debits, where hydrodynamic
effects in a well shaft can be neglected, this function is linearly related to the change in the liquid column.

Performing the Fourier transformation in Eqs. (8)-(10), we obtain the second-order ordinary differential
equation

(A - ) dp =0 (12)
with boundary conditions

1=77(iw+e)_1, @y | 0, (13)

r=ry T
r= 2

) d
(zwd)F - EKp 3 be)

where & =vA; 7 =v(Q; — Qp); the complex function « = a{w) is determined from the relation al = iw/Kg(w), Re
az0.

The function a(w) is analytic with a cut along the beam Rew =0, Im w > 0 [9, 10 ]. It is easy to calculate
the values on the cut shores:

a, =a(iy+£)=iy1/2(KF+)_l/2; (14)

a_ =a(iy—¢)= —iy1/2 (KF-)—1/2. (15)
Problem (12)-(13) has the following solution:
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Fig. 1. Contour of integration for integral (18).

Ay =G ply(ary), A = -Gy yKg(ary),
G, = I (ary) (iwKj (o) + EKp aK, (@) —
— Ky (arp) (iwly (@) — EKg aly (@) ,

tp=77(ia)+£)-1,

where K,(z) and I,(z) are the Macdonald functions [13].

We will seek an intermediate asymptotics for the LRC, when the effect of finiteness of the supply contour
radius r, is insignificant. Letting r, in Eq. (17) go to infinity and using asymptotic forms for the Macdonald functions
[13], after fulfillment of the inverse Fourier transformation, for the function ¢ we obtain the expression:

o) =720 " [ w+e) " exp (iw) f; @) dw (17)

£, @) = Ko (@) (iwKg (@) + EKp aky (@)

Formula (17) represents ¢(?) in the form of a functional of the kernel K. We will seek the leading asymptotics of
this functional at large times ¢, which however are assumed to be comparable with internal relaxation times. To do
this, it is necessary, according to the procedure of [9, 101, to leave in expression (17) the leading terms in the
limit @ — 0, but this limit must not be taken for an argument of the Fourier transform of the kernel. In addition,
it is necessary to leave a contribution related to the finiteness of the well volume, since the direct transition
w - 0 leads to an asymptotics that coincides formally with that for the PRC [10].

After the indicated transformations, we obtain the expression

e =120 " [ +e) " exp (iwt) f (@) do (18)

@) =2 " In (w) @ iw In (i0) — EKp)

Now we transform the integral over the real axis in formula (18) into an integral over the contour C (see
Fig. 1) with allowance for Egs. (7), (14), (15). Resolving the integrands, we derive:

e @)= - (2.71)_l ni(iine + 1, + 1), 19)
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-+ 00 + o0
. -1 -1 R , )
ny=in [y exp(—yndy, Ipy=[y (f(iy+e) —f,(iy—¢e) — in) exp (— yt) dy.
£

&

Here ¢ is the radius of the infinitely small circle along which the point w = 0 passes (see Fig. 1). To pass to the
limit ¢ = 0, in formula (20) we must use two additional formulas from [14 ], namely, formula No. 3.352.4:

+ o0
f ﬂpa;—bjﬂ = ~ exp (ab) Ei(~ ab) (@b >0); (20)
0
and formula No. 8.214.1
Ei(z)=C+ln(—z)+zzn(nn!)_1 (z<0). (21)
1

n=

We note that the integral I, converges for € = (0. When ¢ = 0, the limit /,, is calculated from formulas
(20) and (21). As a result, expression (19) takes a form that is free of the parameter ¢:

e(=n) 'print+7InC + ilyg) - (22)
We write the principal term of the asymptotics for /g
Iyy= (= ilnu (), (23)

1 TR -1 -1 -1 , -2
J()=§& ﬂ{y 0 AQ@ Y+E WNIE y(ny+im) — Key| “exp(—y)dy.

Formulas (22) and (23) give a solution in general form for the problem of the LRC. However, practical
applications on interpretation of experimental LRC require a specific form of the function J(#). The asymptotics of
J(1) at large t is determined by the asymptotics of the weight function A(r) at large relaxation times 7. Suppose
that at large 7 there is a power spectrum

A(r)zaorhln'g, 0<pB<l. (24)

Assumption (24) is consistent with the convergence condition of integral (6). From Egs. (23) and (24) we
find the asymptotics of J(z) at large ¢

sy =at @i PHETY, 4 =al B (25)

where I'(z) is a gamma-function [15].

Substituting asymptotics (25) into Eq. (23), we obtain a formula for the LRC for the power spectrum of
internal relaxation times. As compared to the asymptotics for classical Darcy law (corresponding to the case ag =
0), this formula contains two additional fitting parameters, namely, § and a;. Therefore, in principle, by means of
the LRC it is possible to determine simultaneously the permeability of a collector and the relaxational charac-
teristics.

NOTATION

1, 1y, time; xi, X , Cartesian coordinates; w, frequency; ui, velocity of filtration; &, permeability; m, porosity;
u, shear viscosity of fluid; p, pped, pressure; p, mass density; U, gravitational potential; A = A(r), weight function;
ky, ag, ay, B, parameters that characterize the relaxational kernel; E} and £, volume elasticity modulus of fluid
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and rock skeleton; E = (El—1 +m P+ m ! = l)E;l)_l; r, distance from the well axis; A, Laplace operator; ry,
radius of the well bottom; ry, radius of the supply contour; ¢ = ¢(¢), mass inflow of liquid from the collector to the
well; A, thickness of productive layer; S, area of the effective cross section of the well; g, free fall acceleration; y,
z, A, v, £, Qo, Q1, Ao, A}, auxiliary parameters; Ly, Ly, ©, ¢, «, ¥, f1, f2, I1e, 12, auxiliary functions; C, Euler
constant.
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